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Abstract

Hiding messages in image data, called steganography, is used by crim-
inals and noncriminals alike to send information over the internet. The de-
tection of hidden messages in image data stored on websites and computers,
called steganalysis, is of prime importance to cyber forensics. Automated de-
tection of hidden messages is a requirement, since the shear amount of image
data available online makes it impossible for a person to investigate each im-
age separately. The purpose of this project is to develop a prototype software
system that automatically classifies an image as having hidden information
or not, using a powerful classifier called an artificial neural network (ANN).
The novelty of this ANN is its ability to detect messages hidden with wavelet
embedding algorithms, in addition to other transforms.

1 Project Description

Steganalysis is of increasing importance to cyber security. While the number of
freeware packages available for steganography is increasing each year, the detec-
tion of most of these methods is neither satisfactory nor fully automated. While it
is possible to hide messages within a variety of data file types, image data is likely
to be the medium of choice for cyber criminals for several reasons. First, because
of the high level of redundancy in image data, it is possible to embed a great deal
of hidden information. Second, innocuous-looking images are commonplace on
every computer and arouse little suspicion. Virtually all computer-users keep digi-
tal photos of friends and family, vacations, special events, etc. on their hard drives.
Many web sites use images as a way to add interest and break up the monotony of
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text. By contrast, audio or video files posted on web sites are prone to be examined
for copyright infringement.

The shear volume of image data available online makes it difficult to identify
suspicious content. Thus, automated stego detection systems that can accurately
detect hidden data can bring great benefits to the cyber forensic community in
terms of quick and accurate detection. After a suspicious image is detected, further
processing can be performed to try to extract and decode the hidden message.

The primary result of this project is a prototype software package that takes an
image as input and returns a classification for that image. Images will be classified
as to whether or not they contain hidden information. Our project does not extract
nor decode a hidden message, but simply determines if there is one embedded. The
software package includes code for feature extraction from image data, code for an
ANN classifier that uses the features, plus a Graphical User Interface (GUI) that
enables users to easily use both those components. One novel feature of our system
is the ability to detect wavelet-based steganography, which has not yet been done
(according to an extensive literature review). Since jpeg2000 will be the new im-
age compression standard in the near future, and jpeg2000 is based on the wavelet
transform, our system puts forensic science techniques ahead of those of the crim-
inals, instead of playing catch-up as is usually the case. The ANN is also designed
to detect images embedded with other commonly-used steganography algorithms,
in particular those that leave signatures in the transform domain, specifically the
freeware applications F5 and jsteg.

1.1 Steganography and Steganalysis

Steganography is a set of techniques for transmitting information from a sender
(Alice) to a recipient (Bob) in such a way that an adversary (Warren) is unaware that
any information is being sent. The original concept dates back to Simmons [18].
It is important to distinguish steganography from the related field of cryptography.
Imagine for a moment that Alice is a spy operating in enemy territory, and Bob is
her contact at home. Alice has uncovered the plans for a new weapon that Warren
is building. Alice could encrypt those plans before sending them to Bob. Warren,
who is monitoring the internet, would intercept the message, but would not be
able to read it. However, Warren would be aware that Alice has sent something
obviously sensitive, and that would compromise her role as a spy.

Instead, Alice would try to conceal the very existence of the message from
Warren. Historically, tricks such as invisible ink, tiny puncture marks in a piece of
paper or documents hidden inside a physical object have been used for this purpose.
In the electronic age, Alice might resort to digital hiding techniques. She could take
a digital photo of herself “on vacation,” and make some small modifications to the
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Figure 1: Communication model for steganography and steganalysis

resulting data file. The modifications would be minor enough to not impact the
visual appearance of the photo, but would, nevertheless, contain the message Alice
wishes to send. Bob, upon receipt of the photo, knows how to extract the message
Alice wished to send. Warren, who has intercepted the transmission, would see
nothing but an innocuous-looking photo of a lady on vacation. Figure 1 illustrates
the communication process in which Alice and Bob engage.

Unfortunately, these same techniques can be used for ill. Criminals can hide
incriminating data files (spreadsheets, documents, pornography) on their computer
by concealing them within innocent images. There is some evidence that terrorists
have used steganographic techniques to convey instructions to “sleeper cells” in the
West [15]. Several pieces of data-hiding software are freely available for download,
see for example [20]. A further introduction to this field can be found in [16].

For these reasons, there is (or should be!) interest from the counterterrorism
and law-enforcement communities in measures that can be used to detect the ex-
istence of hidden data. This is steganalysis. There are two basic approaches to
steganalysis. One method is to simply apply every known steganographic algo-
rithm to the file under investigation and see whether the extracted message “makes
sense”. Unfortunately, any good steganography program will first encrypt the mes-
sage before embedding it, and there is typically no way to distinguish an encrypted
message from the random noise that results from applying the extraction algorithm
to a truly innocent file.

Alternatively, one can use statistical methods to distinguish between innocent
and steganographic files. This has the potential advantage of being more general:
different steganographic algorithms may result in similar statistical “anomalies”.
For example, in a typical jpeg image, the AC coefficients are much more likely
to be even numbers than to be odd. But after a naı̈ve steganographic technique
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called LSB encoding, these coefficients will be equally likely to be even or odd.
The discrepancy between even and odd coefficients can be captured by a statistical
quantity. These quantities are collectively called features.

A single feature may provide only scant indication of the presence of steganog-
raphy, or, several features may on their face conflict in their diagnosis. What is
needed is a method of combining multiple features into a single conclusion of
“stego” or “innocent”. For this we utilize a pattern recognition system called an
artificial neural network (ANN).

Developing an ANN is a two-stage process. First the network is trained by
feeding it the features from a large pool of images, some of which are known
to contain stego, and some that are known to not contain stego. Based on the
training, the neural net determines computational rules that can then be applied to
the features of an image of unknown character.

The particular ANN software utilized in this project [2] is also able to select
a subset of the original feature set consisting of those most useful for the charac-
terization task at hand. This has the advantage of speeding up the final software
package. In our case, the initial collection of 81 statistical features was culled to 22
that were judged to be most promising.

A necessary byproduct of our project is a large database of steganographic
images. As described in Section 3, we built a set of images containing data hid-
den with several different steganographic algorithms at several different capacities.
This database will undoubtedly prove useful for further research by our team as
well as others.

1.2 Terminology

Let us define the terms used in Figure 1. The purpose of steganography is to hide
sensitive information in an otherwise innocent computer file. This file is called the
cover. In this paper all covers are assumed to be graphic files, so naturally, we shall
refer to them as cover images. The information to be hidden is called the payload.
The cover image and payload are combined by an embedding algorithm, producing
a stegoimage. We prefer the term payload to “message” since the latter term seems
a bit ambiguous. After all, one might construe “message” to refer to the entire
stegoimage (which is what gets sent) rather than just the hidden data.

At the receiving end, the payload must be extracted from the stegoimage. As
a rule, the original cover image has no value for the recipient, so it is discarded.
The embedding algorithm may or may not require additional inputs, called keys.
These keys might be used to encrypt the payload or might provide details as to
how precisely the data is embedded. The recipient must know these keys in order
to extract the payload.
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The objective of steganalysis is to determine whether data-hiding is taking
place. An image containing hidden information is called a stegoimage. An im-
age with no hidden data will be called innocent.

2 Objectives

The primary objective of this project was to produce a prototype software system
that could be used to detect the presence of hidden data in otherwise innocent-
looking image data files. The software was to have an easy-to-use graphical user
interface and be flexible enough to detect different steganographic techniques in-
cluding those operating in both the DCT and wavelet domains.

We call the package ANNTS (artificial neural network technology for steganal-
ysis). ANNTS is usable by law-enforcement personnel in its present form, but more
important, it demonstrates the feasibility of using artificial neural nets to detect the
presence of steganography in both conventional jpeg as well as jpeg2000-format
images. It should be pointed out that the software only detects, and does not at-
tempt to extract or decode the hidden data. Obviously extraction of the data is
desirable, however successful extraction would involve the ability to break certain
ciphers that are considered to be quite strong. We hope that the software will prove
useful as it is, allowing law-enforcement to focus its efforts on those images (and
users) that test positive.

3 Procedures

The project involved several distinct steps.
1. Build database of stego image files;
2. Choose features and implement code to extract features from images;
3. Design and train artificial neural nets;
4. Implement package and test.

3.1 The Steganographic Database

We began with a set of 1,300 “clean” images in color png (a bitmapped) format
provided to us by Dr. Ed Delp of Purdue University [8]. For our purposes, each
image was converted to two other forms: pgm (greyscale bitmap) and bmp (color
bitmap). The reason for these multiple formats is that different steganographic
algorithms operate on images in different formats. Each of three steganographic
algorithms was applied to every one of the images with random data embedded at
both 50% and 100% of capacity. In addition, the bitmapped images were converted
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Figure 2: Conversion and processing of image data

to jpeg (with no data embedded) to act as the innocent set for training purposes. A
flowchart illustrating the complete set of conversions is given in Figure 2.

We chose two freely available algorithms as the basis for our tests, jsteg [20]
and F5 [21]. jsteg takes as input an image in a bitmapped format and returns
a stegogram in jpeg format. F5 takes as input a color image in bmp format and
returns a stegogram as a color jpeg.

We intended our third algorithm to be one that operated in a wavelet domain.
Unfortunately, no such algorithms seem to be publicly available at this time. So
we wrote our own. The algorithm works by inserting payload bits in the least
significant bit position of each wavelet coefficient. Details are in Appendix B.

We should point out that our wavelet steganographic algorithm is not a good
one. Upon extraction, a high percentage of the payload bits will be incorrect. This
is due to the action of round-off and clipping. However, we believe the algorithm is
adequate for our purposes: a procedure that makes changes in the wavelet domain
that are visually imperceptible in the spatial domain.

3.2 Feature Selection and Extraction Code

After an extensive literature review, we settled on an initial set of 81 statistical
features. These were coded and the statistics for all images in the database were
computed. Based on the results of the ANNs, a final subset of 22 features were se-
lected for use in the software. Feature extraction was implemented in Matlab 7.0.1.
A discussion of the specific features follows. The list of 22 final features is given
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in Appendix C.

Moments of the wavelet transform

The wavelet transform is a multi-scale transformation of image data that can be
viewed as giving spatial location of frequency content. Many natural-scene image
data display strong correlations between the scales in a multi-scale decomposition,
see for example [11]. Farid in [9] exploited the nature of these statistical regulari-
ties when he designed (three different) Fisher linear discriminant analyzers to de-
tect steganographic content in images using three different embedding algorithms.
Our intent was to use a subset of Farid’s 72 features in our single nonlinear ANN
(along with features from other sources) to classify images possibly containing
hidden data produced by several different embedding schemes.

The 72 features fall into two groups of 36 each, all of which are computed from
the 4-scale Haar wavelet coefficients. A brief description of the transformation
process is given in Appendix B. The first group of 36 features, consists of the
mean, variance, skewness and kurtosis computed at each of the first 3 levels on
each subband image. Note that at each level, there are 3 subband images, so we
obtain 3 · 3 · 4 = 36 feature values.

The remaining 36 feature values come from the log errors in the optimal lin-
ear predictor of coefficient magnitude. The linear coefficient predictor we used is
based on “seven important neighbors,” see [6] for example. For the vertical sub-
band, the coefficient Vi(x, y) can be predicted in a linear fashion by

Vi(x, y) =w1Vi(x− 1, y) + w2Vi(x + 1, y)+
w3Vi(x, y − 1) + w4Vi(x, y + 1) + w5Vi+1(x/2, y/2)+
w6Di(x, y) + w7Di+1(x/2, y/2),

(1)

where the wi’s are the unknown scalar weighting values, i denotes the scale or level
value, and (x, y) denotes the pixel location in the image subband. Graphically, we
can denote the nearest neighbors of the pixel Vi(x, y) as in Figure 3. There is a
similar relation for the diagonal and horizontal subbands:

Hi(x, y) =w1Hi(x− 1, y) + w2Hi(x + 1, y)+
w3Hi(x, y − 1) + w4Hi(x, y + 1) + w5Hi+1(x/2, y/2)+
w6Di(x, y) + w7Di+1(x/2, y/2)

Di(x, y) =w1Di(x− 1, y) + w2Di(x + 1, y)+
w3Di(x, y − 1) + w4Di(x, y + 1) + w5Di+1(x/2, y/2)+
w6Hi(x, y) + w7Vi(x, y).
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Figure 3: Illustration of nearest neighborhood pixels used in equation (1). The
shaded box represents Vi(x, y).

For each subband type (vertical, diagonal, and horizontal), the expression can
be written in matrix form. For example, for the vertical subband, we write

V = Qw

and then the unknown variables w are solved for, using the least mean square
solution

w = (QT Q)−1QTV.

Finally, the log error in this predictor is given by

EV = log2 V − log2 |Qw|.

The log error is a vector, and from this vector are computed the same moments as
before: mean, variance, skewness, kurtosis, yielding 3 ·3 ·4 additional features, for
a total of 72 features altogether.

Image quality metrics

Image quality assessment is an active research area whose goal is to create an
objective measure that “correlates well” with a subjective human assessment of the
image. Image quality metrics (IQMs), as they are sometimes called, have been
used extensively, for example, in evaluating compression algorithms for image and
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video data. They provide a reference by which different compression algorithms
applied to many different images or videos can be compared side-by-side.

The IQMs used for steganalysis here were taken from [1]. The expectation is
that the disruption to an image caused by low-pass filtering will be different for an
innocent image as compared to a stegoimage. Figure 4 attempts to illustrate this
idea. ∆ represents the “difference” between an image and its blurred counterpart
and can be used as a feature. The expectation is that if we begin with an innocent
cover image and embed data in it, the vales of ∆ and ∆′ will be sufficiently far
apart to be measurable.

To be more precise, a Gaussian filter, H (see equation (2)), is applied to a
candidate image, I , producing a blurred version of the image, H(I). An IQM, µ,
is used to measure the difference between the image and its blurred counterpart,
yielding a quantity ∆ = µ(I, H(I)). By training the neural network on values
of ∆ obtained from both unmodified and stego images, we hope the neural net will
later be able to distinguish between the two.

We selected three IQMs for this project. They are the median block spectral
phase, the median weighted block spectral distortion and the normalized mean
square HVS error. A description of these metrics is given in equations (3)–(5)
below.

To define the filter and the image quality metrics we assume our image is a
rectangular, single-band array Ii,j , 0 ≤ i ≤ m − 1, 0 ≤ j ≤ n − 1. The blurred
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image H(I) is obtained by convolving I with the 3× 3 kernel ηG where

Guv =
2
π

exp
(
−2(u2 + v2)

)
, for −1 ≤ u, v ≤ 1 and

η =
( 1∑

u,v=−1

|Guv|2
)−1/2 (2)

Let I and J be images of identical dimensions. The value of µ(I, J) where µ is
one of the two block spectral metrics is computed as follows. I and J are each
partitioned into blocks of size 32 × 32, enumerated as I(k), J (k), k = 1, . . . K.
For a block I(k), let Î(k) be its discrete Fourier transform. Then the median block
spectral phase difference between I and J is defined as

µ1(I, J) = median
k=1...K

√√√√ 31∑
i,j=0

(∣∣arg(Î(k)
ij )

∣∣− ∣∣arg(Ĵ (k)
ij )

∣∣)2
(3)

where arg(z) denotes the phase angle of the complex number z. Simiilarly, the
median weighted block spectral distortion is given as

λ · µ2(I, J) + (1− λ) · µ1(I, J). (4)

Here µ2(I, J) is defined in the same manner as µ1(I, J), but with arg(z) replaced
by |z|. The value of λ was chosen experimentally to be 0.000125.

Finally, the normalized mean square Human Visual System metric is defined as

µ3(I, J) =
‖U(I)− U(J)‖2

F

‖U(I)‖2
F

(5)

where ‖ · ‖F denotes the Frobenius norm and U(I) = D−1
(
H · D(I)

)
. In this

equation, the product is the Hadamard product, D(I) denotes the discrete cosine
transform of I , ρ =

√
u2 + v2, and Hu,v = F (ρ)2 where

F (ρ) =

{
.05 exp(ρ0.554) for ρ < 7
exp(−9(| log ρ− log 9|)2.3) for ρ ≥ 7.

See [1] or [14] for more details.

Balanced parity

In [22] Westfeld and Pfitzmann observed that when encrypted data is embedded
as the least significant bit in the bytes of a data file, those bytes will be equally
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likely to be either even or odd. By contrast the bytes of a typical image file do not
seem to have uniformly distributed parity. This seems to be true whether the bytes
represent either pixel values or jpeg coefficients. Westfeld and Pfitzmann used this
idea to design a statistical measure that could be used to distinguish stegoimages
created with an LSB-based algorithm from innocent images. The technique was
refined into a statistical feature in [13].

Let J be a portion of a fixed jpeg image, and let xi denote the number of
DCT coefficients in J equal to i for i = −128, . . . , 127. Furthermore, define
x∗2i = 1

2(x2i + x2i+1), for i = −64, . . . , 63. We now take the statistic

χ2 =
63∑

i=−64
i6=0

(x2i − x∗2i)
2

x∗2i

(6)

which is a χ2 statistic with 127 degrees of freedom. (If the values of x2i or x∗2i are
less than 4 then equation (6) must be modified slightly. See [13] for details.)

The balanced parity feature for an image I is the maximum value of χ2 as J
ranges from 1%, 2%,. . . ,100% of I . We take a portion of I by working in a zig-zag
order, as in the jsteg algorithm.

DCT historgrams

In [10] Fridrich devised a set of statistical features designed to detect the stegano-
graphic strategies behind the F5 algorithm, among others. We selected 5 of those
features for use in our neural nets.

Called calibration, the process is similar to that used with the image quality
metrics, but is specifically designed for jpeg images. Figure 5 illustrates the pro-
cess. A jpeg image (I) is first decompressed back to a bitmap. The bitmapped
image is cropped by four pixels along each edge. Then the bitmap is recompressed
to a jpeg (Ic), using the same compression ratio as the original image. The statistics
then measure the difference in the distribution of DCT coefficients between I and
Ic.

In each of the following equations, the symbol ‖x‖L1 denotes
∑

i |xi|, called
the L1-norm of the vector x. Also N (x) = x/‖x‖L1 is the normalization of the
vector x.

The global histogram feature, equation (7), compares the global distribution of
the quantized DCT coefficient values of I to the distribution of Ic.

F1 = ‖N (H(I))−N (H(Ic))‖L1
, (7)

where H is the frequency count of an image’s quantized DCT coefficients’ values.
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Figure 5: The DCT calibration technique. I denotes a jpeg image, Ic its calibrated
counterpart.

The individual histogram feature for (1,3), equation (8), compares the distribu-
tion of quantized DCT coefficients in the (1,3) position in each 8× 8 block.

F2 =
∥∥N (h13(I))−N (h13(Ic))

∥∥
L1

, (8)

where h13 is the histogram of an image’s quantized DCT coefficients in the (1,3)
position of each 8× 8 block.

The dual histogram feature for 0, equation (9), compares the number of quan-
tized DCT coefficients equal to 0 in each position of the 8× 8 blocks.

F3 =
∥∥N (G0(I))−N (G0(Ic))

∥∥
L1

, (9)

where G0 is the 8 × 8 matrix of elements g0
i,j =

∑
k δ

(
0, dk(i, j)

)
, dk(i, j) is the

value in the (i, j) position of the kth block, and δ is the Dirac delta function.
The L1 blockiness feature, equation (10), employs the blockiness statistical test

which compares pixel values along the edges of 8× 8 blocks.

F4 = ‖N (B(I))−N (B(Ic))‖L1
, (10)

where

B =

∑M ′

i=1

∑N
j=1 |x8i,j − x8i+1,j |+

∑N ′

j=1

∑M
i=1 |xi,8j − xi,8j+1|

N ·M ′ + M ·N ′

and xi,j is the value of the pixel in the (i, j) location, the dimensions of the image
are M ×N and M ′ = b(M − 1)/8c, N ′ = b(N − 1)/8c.
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The Co-occurrence feature for (1,1), equation (11), compares the values of
quantized DCT coefficients in neighboring blocks.

F5 =
(
C1,1(I) + C1,−1(I) + C−1,1(I) + C−1,−1(I)

)
−(

C1,1(Ic) + C1,−1(Ic) + C−1,1(Ic) + C−1,−1(Ic)
) (11)

where

Cs,t =
32

MN

(M−2)/8∑
k=0

(N−1)/8∑
l=0

8∑
i,j=1

δ(s, d(8k + i, 8l + j))δ(t, d(8(k + 1) + i, 8l + j))

+
32

MN

(M−1)/8∑
k=0

(N−2)/8∑
l=0

8∑
i,j=1

δ(s, d(8k + i, 8l + j))δ(t, d(8k + i, 8(l + 1) + j)),

and d(i, j) is the quantized DCT coefficient value in the (i, j) location.

3.3 Design of Artificial Neural Networks

An artificial neural network is a nonlinear optimization technique that is used to
predict the behavior of complex systems. It can also be used, as in this project, to
perform pattern recognition and data classification. Data is presented to the ANN
as a set of points in a high-dimensional space. Each point is labeled as belonging
to one of two classes: A or B. The ANN determines a nonlinear function that
separates the A-points from the B-points. This function can then be used to predict
the class of new data points whose character was heretofore unknown.

One particular merit of an artificial neural network is that it is adaptive—as
additional data is provided to the system it refines its prediction function. In this
way the pattern recognizer can respond to evolution in the data. For example, if
small modifications are made to an existing steganographic algorithm, the software
will be able to adapt.

The Adaptive Computing Laboratory (ACL) Toolkit (henceforth, Toolkit) is
a comprehensive system developed at Iowa State University for advanced artifi-
cial neural network development and application. The Toolkit is an open-source
software package available from [2]. We selected this software for our pattern
recognition system because of its extensive and sophisticated proven capabilities
at solving difficult data mining problems [3, 19].

The set of weight values and number of nodes for an ANN is called the ANN
architecture. The Toolkit allows the ANN architecture to be simultaneously and
automatically optimized using a dynamic node approach, an advanced technique
not available in commercial ANN software. The number of optimal nodes is de-
termined by the ANN itself using information gleaned from the data. The weight
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values are optimized using a scaled conjugate gradient descent learning algorithm
(SCGD). This learning algorithm is faster than the back-propagation learning al-
gorithm by a factor of 1000 or more, and thus the ANN trained with SCDG can
attempt bigger problems such as processing with image data with reasonable com-
puter resources. Thus, with a better modeling capability than previously used
ANNs, we have achieved initial results that outperform previous published results
using ANNs [4, 17].

During the course of this project we discovered that we obtained much better
results if we developed three separate networks, one for each of the three target
stego algorithms.

3.4 Implementation and Testing

The front-end for the package was written in Visual Basic. The mathematical func-
tions are written (and compiled) in Matlab 7.0.1. the Matlab Component Runtime
Library serves as the interface between the front- and back-ends. The front-end
provides an easy-to-use graphical user interface that is similar to other Microsoft
Windows applications. Matlab is an excellent development platform for this sort of
application. It provides ready access to a large library of advanced mathematical
functions (such as the discrete cosine transform) and makes array-handling very
intuitive. The downside is that execution time and memory use are much worse
than they would be for a natively-compiled application. In the long run it will be
necessary to reimplement the package in a low-level language, but that is outside
the scope of this project.

The software was tested by applying the neural nets to approximately 250
images, half stegograms and half innocent. This was done for each of the three
steganographic algorithms at both 50% and 100% of capacity. The results are de-
scribed in Section 4.

The neural net compiles the features for an image and returns a score with a
target of s0 for innocent and s1 for stegogram. A threshold t is chosen (generally,
t = 1

2(s0 + s1)) and any image whose score is below the value t is judged to be
innocent. Those with scores above t are predicted to be stegoimages. Figure 6
shows the output of the ANN for one run of 244 images. Images 1–122 all contain
data hidden with jsteg at 50% of capacity. (In this instance, s0 = 0, s1 = 1 and
t = .5). Observe that every one of them has a score above t, so the ANN predicts
correctly in every case. This is reflected in the 100% true positive entry in Table 1.
Images 123–244 are all innocent. Note that all but two of them have scores lying
below the 0.5 threshold. Thus the ANN had an approximately 2% false positive
rate for this algorithm.

14



Figure 6: Graph of output values from ANN for a set of 244 images

100% of Capacity 50% of Capacity
Stego algorithm True Pos False Pos True Pos False Pos
jsteg 97% 0% 100% 2%
F5 92% 5% 85% 20%
wavelet 95% 16% 97% 16%

Table 1: Results of ANN classification. True Pos denotes the percentage of stego
images correctly identified as such. False Pos is the percentage of innocent images
incorrectly identified as having hidden data.

4 Results and Discussion

ANNTS is quite successful at identifying all stegoimages, although the results var-
ied depending on the particular steganographic algorithm and amount of hidden
data. As Table 1 shows, our distinguisher is virtually flawless at recognizing data
hidden using jsteg. This is largely due to a known weaknesses in the jsteg algo-
rithm that the balanced parity feature (section 3.2) is designed to exploit. ANNTS
misses at most 3% of all images embedded to capacity with jsteg, and incor-
rectly flags an innocent image as having even a small amount of hidden data at
most 2% of the time.

Our techniques were somewhat less successful against the F5 algorithm, which
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was specifically designed as an improvement to jsteg. However, at least for ste-
goimages with data embedded at close to full capacity our methods are quite suc-
cessful. ANNTS caught 92% of all images embedded to full capacity with F5 and
misidentified only 5%. Unfortunately our results at the 50% of capacity level are
less satisfactory. In particular, the system falsely labels 20% of all innocent im-
ages as containing hidden data. There are several possible explanations for this.
The detection rate may be dependent on the nature of the image being examined.
For example, ANNTS may be more effective on photographs (which have many
variations in color or shade) than on computer-generated images or images with
large uniform areas such as sky. Further research is necessary on this point, but the
results are encouraging.

Finally, we were able to identify correctly 96% of the stegoimages created
with our wavelet embedding algorithm, with a false positive rate of 16%. To our
knowledge we are the first to perform tests on embeddings in the wavelet domain.
Certainly a 16% false positive rate is unacceptably high and requires further re-
search.

4.1 Comparison to other research

It is desirable to compare our results to those obtained by others in the field. Unfor-
tunately, this is not easy to do since thus far each research team has used a different
testing methodology.

Westfeld and Pfitzmann [22] perform some steganalysis on jsteg but not an
extensive enough set of tests to form a basis of comparison. Lyu and Farid [12]
use a one-class support vector machine in a manner similar to our artificial neural
nets. While their true positive results for jsteg and F5 are not as strong as ours,
it is not clear to what degree the stegoimages contained embedded data up to the
capacity of the cover. Also, they seemed to insist on a very low false positive rate.
For example, for F5 they obtain a true positive rate of 51% with a false positive
rate of 1%.

In [10], Fridrich performed tests similar to ours using a Fisher linear discrim-
inant instead of an artificial neural net. She describes her results in terms of the
area under the ROC curve. This has the advantage that it combines both the true
and false positives in a single measure. The ROC curves for our tests on F5 are
shown in Figure 7. More precisely, Fridrich uses the “detection reliability” mea-
sure ρ = 2A−1, where A denotes the area under the ROC curve. We obtain values
of 0.74 and 0.95 for ρ (at 50% and 100% of capacity) compared to 0.96 and 0.99
for Fridrich.

16



0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

Figure 7: ROC curve for detection of F5-steganography at 50% of capacity (solid
line) and at 100% of capacity (broken line)

4.2 The user interface

While our package is not a polished piece of commercial software, we believe
it will be easy to install and use on any reasonably recent PC running Microsoft
Windows. After starting the program, the user is presented with a window as in
Figure 8. The selection dialog in the top center of the window can be used to
choose a directory containing the images to be scanned. In the center-right appears
a list of images. These can be previewed in the bottom left portion of the window.

Once an image is selected, the user clicks the “Analyze Selected Image” but-
ton. There is a delay while the computations are performed. When complete, the
software will indicate whether it predicts the existence of hidden messages using
the check boxes in the center of the screen. In the example illustrated above, the
software concludes that the image falls in “class 4”. That is, data hidden at the 50%
of capacity level using the F5 algorithm.

5 Dissemination

On July 28, 2006 we demonstrated the software package at a meeting of the Iowa
Internet Crimes Against Children Task Force. About 10 agents were present, in-
cluding our host, Special Agent Supervisor Michael Morris. The agents made
several suggestions to enhance the utility of the software. Some of these are quite
straightforward to implement, and we have done so for the final release of the soft-
ware. Others are much more involved and will have to wait for a future project to
be implemented.
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Figure 8: Screen shot from the ANNTS software

Through Mr. Morris, we will provide the ICAC (as well as the MFRC) with
copies of the software and a brief users manual. In addition we are preparing a
paper for publication, hopefully in the IEEE Journal of Forensic Science. Pre-
liminary results were published and presented at the Annual SPIE meeting in San
Diego, 2005 [7].

We are pleased to report that the software has had its first field test, which was
successful. Detective David Schwindt of the Iowa City Police Department con-
tacted us with an image he wished to have analyzed. ANNTS returned a negative
response. Subsequently Detective Schwindt uncovered the original source of the
photograph and determined that it was identical (both images had the same SHA1
hash) to the version under investigation. Thus our conclusion that the image was
innocent appears to be correct.
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APPENDIX

A Final Expense Summary

Personnel Salary $42,425
Materials and Supplies $ 4,449
Travel $ 2,794

B The Wavelet Embedding Algorithm

The “wavelet embedding” applied here is not a true steganographic algorithm. For
one thing, the extracted payload contains far too many errors to be useful in prac-
tice. For another, the stegoimage is a bitmap, which is not very realistic. Conver-
sion to jpeg or jpeg2000 would undoubtedly destroy the payload.

Briefly, a 3-scale integer-to-integer wavelet transform is applied to a grayscale
image in bitmap form. The transform used was the (4, 2) integer-to-integer inter-
polating transform of Calderbank, Daubechies, Sweldens and Yeo [5]. The one-
dimensional transform of a sequence s0,∗ is given by the equations

d1,l = s0,2l+1 −

⌊
9
16

(s0,2l + s0,2l+2)−
1
16

(s0,2l−2 + s0,2l+4) +
1
2

⌋

s1,l = s0,2l +

⌊
1
4
(d1,l−1 + d1,l) +

1
2

⌋

where d1,∗ denotes the high-frequency component and s1,∗ the low-frequency com-
ponent of the transform. The two-dimensional transform is separable, thus it is ob-
tained by applying the above equations first to the rows and then the columns of an
array. It is important to note that unlike the discrete cosine transform, every com-
ponent of this transform is again an integer, although it may not lie in the interval
0. . . 255.

When the transform is applied to an image of size n × m, the result is 4 “im-
ages” of size n

2 ×
m
2 consisting of the high/high, high/low, low/high and low/low

components of the transform. In a 3-scale transform, the transform is applied a sec-
ond time to the low/low component and then a third time to the low/low component
of the second scale..

The embedding strategy is very simple. The least significant bit of a wavelet
coefficient is replaced by one bit of the payload. This means that a coefficient is
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Figure 9: An image, its 1-scale and 3-scale wavelet transforms. In the middle
image, the low/low component is at the top left, the high/high component is the
bottom right.
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changed by at most one, and on average, a coefficient changes by about .5. This
replacement is applied to every coefficient in the transformed image except those
in the low/low component of the third-level wavelet. (In Figure 9 this exception is
the little image in the very top-left corner of the 3-scale transform.) Thus, if the
original image has n pixels, there are n/43 coefficients that are left alone.

After embedding, the inverse transform is applied. The output will be a rect-
angular array of integers, however, there will typically be values outside the range
[0, 255]. These are clipped, so that negative values are replaced by 0 and values
above 255 are replaced by 255. It is the clipping that introduces errors upon ex-
traction.

Despite its shortcomings, we believe this technique is useful for steganalytic
purposes. We desire statistical techniques that will determine whether an image
has been modified by a perturbation of its wavelet transform. Since this embedding
algorithm does that, it can serve as a reasonable testbed for candidate statistics.

C Final Feature Set

During the training phase of the project we pared the original set of 81 features
(discussed in Section 3.2) down to 22 that showed the most promise for steganaly-
sis. We list them here.

mean(3,H)
variance(2,H)
variance(3,H)
kurtosis(2,D)
mean error(2,V)
mean error(3,H)
mean error(3,V)
mean error(3,D)
variance error(3,H)
variance error(3,V)
skew error(2,H)
skew error (3,H)
skew error (3,V)
kurtosis error(3,V)
balanced parity (equation (6))
global histogram (equation (7))
individual historgram for (1, 3)(equation (8))
dual histogram for 0 (equation (9))
L1 blockiness (equation (10))

21



co-occurence for (1, 1) (equation (11))
median weighted block spectral distortion (equation (4))
normalized HVS metric (equation (5))
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